Диагонали параллелограмма равны си d, а уголмежду ними а. Найдите стороны параллелограмма, если:1) с=5 м, d=6 м, а=60°; 2) с=22 см, d=14 см, а=30°;3) с=0,5 м, d=1,5 м, а=120°; 4)с =4/3м, d=3/4м, а=45°.
Ответ:
Диагонали параллелограмма точкой пересечения делятся пополам, а уголы между диагоналями равны α и (180-α).
Тогда по теореме косинусов из треугольника АОВ:
АВ²=АО²+ВО²-2АО*ВО*Cosα
Bз треугольника ВОС:
ВС²=ВО²+АО²-2АО*ВО*Cos(180-α).
Cos(180-α)=-Cosα. Тогда
ВС²=ВО²+АО²+2АО*ВО*Cosα.
В случае 1:
АВ²=2,5²+3²-2*2,5*3*(1/2) =7,75. АВ=√7,75 ≈ 2,8м.
ВС²=2,5²+3²+2*2,5*3*(1/2) =22,75. ВС=√22,75 ≈ 4,8м.
В случае 2:
АВ²=11²+7²-2*11*7*(√3/2) =170-77√3. АВ=√(170-77√3) ≈ 6см.
ВС²=11²+7²+2*11*7*(√3/2) =170+77√3. ВС=√(170+77√3) ≈ 17см.
Объяснение: